Wednesday, January 23, 2013

Диагональный график

При калибровке модели основным критерием качества решения обратной задачи является степень совпадения модельных и натурных уровней в скважинах. В графическом виде это сравнение принято показывать в виде т.н. диагонального графика.
По оси ординат обычно откладываются расчетные значения, а по оси абсцисс - наблюденные. Можно и наоборот, принципиальной разницы нет, но тому, кто привык «читать» этот график каким-либо одним образом, порою бывает сложно переключиться на другой. Умение бегло читать этот график, т.е. с одного взгляда на него, увидеть чего не хватает в модели — важнейший навык гидрогеолога-модельера. Попробую объяснить азы этой премудрости с помощью наглядных примеров (картинки все кликабельны).


Очевидно, что чем ближе точки к диагонали, тем меньше разница между наблюденными и расчетными значениями и тем качественнее решена обратная задача. На рисунке показана практически идеально решенная задача. Скажу по секрету — ее пришлось придумывать, в реальности такого почти никогда не бывает и если вы, паче чаяния, являетесь экспертом, то знайте, что такой график — повод заподозрить модель в фиктивности. Впрочем, тут не все так просто — крайне важно не забывать про масштаб графика. С виду идеальный диагональный график может на поверку таить в себе невязку в десятки метров.


Два типичных графика: расчетные значения все дружно оказались выше или ниже наблюденных. В первом случае вы затопили, а во втором — пересушили модель. Если вы думаете, что я подскажу, как с этим бороться, то вы ошибаетесь. Увы, универсального рецепта не существует — все слишком сильно зависит от схематизации модели. Где-то надо поиграться с расходами на питающих границах, где-то менять фильтрационные параметры (характерно для многослойных толщ, в которых активно развито вертикальное перетекание — они бывают очень чувствительны к проницаемости разделяющих слоев), а где-то и вовсе придется пересматривать всю схематизацию. Ну, это если у вас вдруг настолько полные исходные данные, что ни фильтрационных свойств не изменишь, ни расходных характеристик, но это тоже больше из области ненаучной фантастики.



Самый неприятный вид диагонального графика, в худшем случае (первый кадр, очевидно) говорящий нам о том, что мы очень фиговые гидрогеологи и умудрились полностью перепутать направление движения подземных вод, а в более благоприятном (последний кадр) — о том, что нам не мешало бы увеличить градиенты потока. Но лично мне больше всего не нравится средний кадр, т.к. из него очевидно, что мы где-то накосячили, но непонятно — где. Из него видно, что градиент потока у нас получился недостаточный, но в каком направлении — не ясно.

Еще один типичный вид диагонального графика — диагональ проходит через «облако» точек. Его особенность заключается в том, что в зависимости от характера исходных данных, он может как подтверждать достаточное качество решения обратной задачи, так и говорить об обратном. Удивительно, но объясняется просто. Если вы имеете дело с большим набором разновременных замеров уровня подземных вод (типичная ситуация при работе фондовыми данными), то совершенно невозможно «уложить все точки на диагональ» — просто потому, что для каждого замера характерны свои отличные от остальных граничные условия. Грубо говоря, часть замеров может быть сделано в зимнюю межень и характеризоваться уровнем заметно ниже среднегодичного, а часть - в весенний паводок, с уровнем выше среднегодичного. Пытаясь угодить и тем и этим вы получите либо страшно ошибочную модель, либо вообще ничего не добьетесь, только нервы потратите. Поэтому в данном случае обратную задачу можно считать решенной удовлетворительно, важно лишь следить за тем, чтоб разница между наблюденными и расчетными значениями не вылетала за амплитуду колебаний уровня подземных вод. А если делать все совсем по-уму, то надо на графике «меженные» и «паводковые» скважины рисовать разным цветом и следить, чтоб нужный цвет был с нужной стороны от диагонали.
Теперь совершенно очевидно, когда такой график будет говорить нам, что что-то мы напортачили в схематизации: когда вся масса замеров была проведена за относительно короткий промежуток времени, в течение которого не случалось резких изменений климатической обстановки. Кстати, из этого графика тоже понятно, что мы накосячили, но не совсем понятно — в чем.

Численным критерием качества решения обратной задачи традиционно является средний квадрат ошибки (Mean squared error, в PMWin он почему-то назван Variance), о котором я расскажу в следующий раз.

Sunday, January 20, 2013

Subsurface and groundwater hydrology: Basic theory and application of computational methods

Коллега поделился замечательной книгой под авторством Tuomo Karvonen, профессора Helsinki University of Technology Department of Civil and Environmental Engineering: Subsurface and groundwater hydrology: Basic theory and application of computational methods. Книга представляет собой несколько упрощенную версию известной монографии Wolfgang Kinzelbach “Groundwater modelling”.
Раньше книга была выложена на личной странице автора, которая уже давно недоступна, да и сам автор пропал с экранов радаров. Думаю, я никому не наврежу, если выложу её в публичный доступ — не пропадать же такому добру.

Thursday, December 27, 2012

Русская инструкция к MODFLOW

Вы не поверите, что я откопал! Я нашел частичный перевод инструкции к программе Processing Modflow 5-й версии. Я знал, что он существует — его делал мой научный руководитель в универе М.М. Кузнецов, но поскольку я достаточно свободно владею техническим английским, то мне он как-то не особо был нужен и я его не сохранил. Наткнулся я на него в профильном сообществе вКонтакте. В общем, кому надо, качайте: русскую инструкцию к Processing Modflow 5.3.
Версия конечно старая, но это во всяком случае лучшее из того, что есть. Кроме того, основные положения с тех пор практически не поменялись. Считайте это моим новогодним подарком читателям.

Tuesday, December 25, 2012

Кстати, о «верховодке»

Отчеты инженеров-геологов частенько грешат неправильным употреблением терминов «верховодка» и «грунтовые воды». Важно понимать, что это разные вещи.
«Верховодка» — локальный водоносный горизонт, невыдержанный по простиранию и времени существования, образующийся как правило в верхней части разреза в виде линз воды над относительно слабопроницаемыми грунтами (тоже часто залегающими в виде линз).
Грунтовый водоносный горизонт — первый от поверхности земли выдержанный по простиранию и времени существования водоносный горизонт.
Кстати, в чистом виде MODFLOW формирование «верховодки» считать не умеет. Т.е. если вам вдруг досталась задача по расчету осушения «верховодки», то либо придется менять инструмент, либо идти на «сделку с совестью» — считать её как полноценный водоносный горизонт, что приведет к заведомо завышенным расходам, а часто вообще невозможно в силу особенностей строения верхней части разреза.
Если же вода вскрыта не всеми скважинами, а водоупор не линзообразный, то это т.н. «горизонт спорадического распространения». Формально, каждая верховодка — горизонт спорадического распространения, но не каждый горизонт спорадического распространения — верховодка.

Thursday, December 20, 2012

Чудеса нашего городка

С занятным гидрогеологическим казусом столкнулся при выполнении одной работы. Объект в центре Москвы, недалеко от одноименной реки.
Разрез представлен сверху вниз: техногенными грунтами, современным аллювием (сверху пески крупные и даже гравелистые, ниже — мелкие), флювиогляциальными отложениями разного состава (пески, суглинки), карбонатными отложениями каменноугольного периода.
Воду изыскатели нашли в крупных аллювиальных песках. Причем водоупором для них служат — барабанная дробь... мелкие аллювиальные пески, которые оказались абсолютно сухими. Пески чистые, промытые, т.е. повышенного содержания пылеватых и глинистых частиц не обнаружено. Следующий водоносный горизонт вскрыли только в нижней части водно-ледниковых отложений (установившийся уровень существенно ниже первого горизонта).

Я бы с радостью списал такую картину на «верховодку», которая образовалась на относительно слабопроницаемых мелких песках после сильного ливня, прошедшего накануне изысканий. Да одна беда: изыскания проводились несколькими независимыми фирмами, в разные годы и в разные периоды года.
И все нарисовали одну и ту же картину — полноценный водоносный горизонт с водоупором из песков. Понимая, что выглядит все это очень странно, называют этот горизонт «верховодкой», которой тут и не пахнет, судя по всему.
Что с этим делать, как объснить, а главное — как моделировать влияние стены в грунте, закопанной аж на 40 метров, я пока не придумал.

Friday, December 14, 2012

Новости нашего законодательства: обновили СНиП 11-02-96. Инженерные изыскания для строительства.

Обновился СНиП 11-02-96. Инженерные изыскания для строительства (СП 47.13330.2012).
Сам документ в последней редакции можно скачать по ссылке: http://iziskately.ru/download/office_....pdf.
Всех изменений пока не знаю, но уже нашел неприятные моменты. В частности, пункт 4.9 из старой редакции стал пунктом 4.24 и существенно дополнился.
Было:
4.9 Средства измерений, применяемые при инженерных изысканиях для строительства, подлежат государственному метрологическому контролю и надзору, выполняемому аккредитованными метрологическими службами в порядке, установленном Госстандартом России.
Стало:
4.24 Средства измерений, применяемые в инженерных изысканиях, подлежат государственному метрологическому контролю и надзору. Применяемое программное обеспечение дожно быть сертифицированным. Применение нестандартного уникального или инновационного оборудования должно быть обосновано в утвержденной заказчиком программе работ.
Одним словом, вольница для гидрогеологов, о которой я писал ранее, похоже, заканчивается. Ситуация складывается крайне неприятная: сертификат то есть только у Геолинка, который очень умно отказался от поддержки своей программы (в частности, они перестали проводить курсы по обучению моделированию в ModTech), а ни у одной из версий MODFLOW, которыми весь мир пользуется, — нет и никогда не было. И совершенно не факт, что когда-либо появится, поскольку серьезно их дистрибуцией у нас никто не занимается.

Sunday, December 9, 2012

Перевод отметок рельефа из Autocad в табличный вид

При подготовке данных для моделирования весьма часто возникает необходимость в конвертации отметок рельефа из геоподосновы, сохраненной в формате Autocad DWG, в табличный вид (типа X, Y, Z) для того, чтоб скормить эти данные какому-нибудь интерполятору (Surfer или встроенный в PmWin “Field Interpolator”).
Я почти уверен точно знаю, что эта задача может быть легко и быстро решена с помощью самого Autocad — достаточно запустить соответствующую программу на LISP-е и радоваться жизни. К сожалению, я LISP-а не знаю, да и вообще не являюсь большим специалистом в автокаде.
В современных версиях автокада эта проблема решается еще проще: через инструмент, расположенный в пункте меню Tools\Data Extraction. Инструмент довольно мощный, но в нестандартных случаях возможно придется повозиться.
Но проблему как-то надо решать. Я предлагаю использовать для этого MapInfo (согласен, для кого-то это выглядит сменой шила на мыло). Далее по пунктам:
  1. Конвертируем слой с отметками (желательно, чтоб слой содержал только отметки в текстовом виде, без самих точек) из формата Autocad DWG  в формат MapInfo TAB (с помощью встроенного в MapInfo мини-приложения Universal Translator).
  2. Подчищаем полученную таблицу от нетекстовых элементов: это можно сделать несколькими способами, наиболее удобный и быстрый — мини-приложение MapCad, но можно и с помощью Query Select и функции ObjectInfo(obj, 1), но там придется сначала создать дополнительный столбец в таблицу, занести него результат выполнения функции ObjectInfo(obj, 1), а уж потом делать Query Select по этому столбцу, выбирая значения, отличные от 10 (а 10 — это как раз текстовые).
  3. Еще разок запускаем Update Column (создайте новый столбец с типом float или смените тип существующего столбца) с той же функцией, но с другими параметрами: ObjectInfo(obj, 3). Если все сделано правильно, то в вашей таблице появится столбец типа float с отметками рельефа.
  4. Запускаем мини-приложение Coordinate Extractor: в таблице теперь будут столбцы с координатами центра текстовой подписи отметки рельефа. Вот тут важно отметить явный недостаток рассматриваемого метода: наши точки будут немного смещены относительно реальных отметок — ровно на столько, на сколько отличаются координаты середины метки от координат точки замера. Если вы страдаете перфекционизмом, то эту проблему можно решить с помощью простейших математических операций со свежеполученными координатами.
  5. Запускаем Table/Create Points, если хотим заменить тектовые метки на точки (а уж сами метки пусть MapInfo своими силами рисует, благо соответствующий столбец в таблице уже есть).
  6. Экспортируем полученную таблицу в нужный текстовый формат (txt или csv).
Метода только выглядит громоздко, на самом же деле, у меня уходит на все эти действия не больше минуты — главное не сбиваться и соблюдать порядок действий.