Прикладная гидрогеология, геофильтрационное моделирование, инженерная геология. Блог специалиста по гидрогеологическому моделированию Копылова Александра.
29/07/2013
Гидрогеологический дайджест
The landslide blog. Целый блог об оползнях.
Generating Robust Polygonal Grids for MODFLOW-USG using Visual MODFLOW Flex. Я никогда не был большим поклонником Visual Modflow (дорогой он и довольно сложен в освоении), но возможности новой его инкарнации — Visual MODFLOW Flex, просто таки поражают. Интересно, а когда конкуренты доберутся до таких вот произвольных модельных сеток. Перспективы то заманчивее некуда — можно будет каждое граничное условие, каждую скважину детализировать до упора.
In MODFLOW, things can go wrong: the PCG solver. О проблемах, которые могут возникнуть при использовании популярного «солвера» PCG (метод сопряженных градиентов).
Ground water manual. Название говорит само за себя: руководство по подземным водам от U.S. Department of the Interior Bureau of Reclamation (не знаю как правильно перевести, т.к. дословно получается что-то странное: Отдел Внутренних Дел США, Бюро Мелиорации).
Drainage manual. Руководство по дренажам от того-же издательства. Бегло пролистал эту pdf-ку и сходу нашел несколько любопытных моментов: график на странице 27, к примеру.
Groundwater publications. Еще одна подборка публикаций о подземных водах, но уже от другого ведомства.
23/01/2013
Диагональный график
По оси ординат обычно откладываются расчетные значения, а по оси абсцисс - наблюденные. Можно и наоборот, принципиальной разницы нет, но тому, кто привык «читать» этот график каким-либо одним образом, порою бывает сложно переключиться на другой. Умение бегло читать этот график, т.е. с одного взгляда на него, увидеть чего не хватает в модели — важнейший навык гидрогеолога-модельера. Попробую объяснить азы этой премудрости с помощью наглядных примеров (картинки все кликабельны).
Очевидно, что чем ближе точки к диагонали, тем меньше разница между наблюденными и расчетными значениями и тем качественнее решена обратная задача. На рисунке показана практически идеально решенная задача. Скажу по секрету — ее пришлось придумывать, в реальности такого почти никогда не бывает и если вы, паче чаяния, являетесь экспертом, то знайте, что такой график — повод заподозрить модель в фиктивности. Впрочем, тут не все так просто — крайне важно не забывать про масштаб графика. С виду идеальный диагональный график может на поверку таить в себе невязку в десятки метров.
Два типичных графика: расчетные значения все дружно оказались выше или ниже наблюденных. В первом случае вы затопили, а во втором — пересушили модель. Если вы думаете, что я подскажу, как с этим бороться, то вы ошибаетесь. Увы, универсального рецепта не существует — все слишком сильно зависит от схематизации модели. Где-то надо поиграться с расходами на питающих границах, где-то менять фильтрационные параметры (характерно для многослойных толщ, в которых активно развито вертикальное перетекание — они бывают очень чувствительны к проницаемости разделяющих слоев), а где-то и вовсе придется пересматривать всю схематизацию. Ну, это если у вас вдруг настолько полные исходные данные, что ни фильтрационных свойств не изменишь, ни расходных характеристик, но это тоже больше из области ненаучной фантастики.
Еще один типичный вид диагонального графика — диагональ проходит через «облако» точек. Его особенность заключается в том, что в зависимости от характера исходных данных, он может как подтверждать достаточное качество решения обратной задачи, так и говорить об обратном. Удивительно, но объясняется просто. Если вы имеете дело с большим набором разновременных замеров уровня подземных вод (типичная ситуация при работе фондовыми данными), то совершенно невозможно «уложить все точки на диагональ» — просто потому, что для каждого замера характерны свои отличные от остальных граничные условия. Грубо говоря, часть замеров может быть сделано в зимнюю межень и характеризоваться уровнем заметно ниже среднегодичного, а часть - в весенний паводок, с уровнем выше среднегодичного. Пытаясь угодить и тем и этим вы получите либо страшно ошибочную модель, либо вообще ничего не добьетесь, только нервы потратите. Поэтому в данном случае обратную задачу можно считать решенной удовлетворительно, важно лишь следить за тем, чтоб разница между наблюденными и расчетными значениями не вылетала за амплитуду колебаний уровня подземных вод. А если делать все совсем по-уму, то надо на графике «меженные» и «паводковые» скважины рисовать разным цветом и следить, чтоб нужный цвет был с нужной стороны от диагонали.
Теперь совершенно очевидно, когда такой график будет говорить нам, что что-то мы напортачили в схематизации: когда вся масса замеров была проведена за относительно короткий промежуток времени, в течение которого не случалось резких изменений климатической обстановки. Кстати, из этого графика тоже понятно, что мы накосячили, но не совсем понятно — в чем.
Численным критерием качества решения обратной задачи традиционно является средний квадрат ошибки (Mean squared error, в PMWin он почему-то назван Variance), о котором я расскажу в следующий раз.
08/12/2012
О калибровке модели
В этом случае качество и обоснованность решения обратной задачи существенно возрастает. И вот почему. Если вспомнить закон Дарси:
u=k\cdot I
то не сложно заметить, что нельзя определить k, не зная u и I, т.е. подбирать коэффициент фильтрации, основываясь только на знании градиента, — можно конечно, но для этого обладать большим разнообразием хорошо обоснованных граничных условий, а не только одну границу I-рода по периметру модельной сетки, т.к. при таком раскладе модель может вообще не давать изменения градиента при подборе коэффициента фильтрации. А все вариации будут выражены в изменении расхода потока. Можете сами проверить на простейшей тестовой модели.
Когда речь идет о серьезных гидрогеологических исследованиях, то эта рекомендация превращается в обязательное требование.
28/11/2012
Особенности сеточной дискретизации при задании скважин
...как в расчете учесть прямоугольную сетку?Вынесу свой ответ в виде отдельной записи, т.к. он может оказаться полезным не только вопрошающему.
В статье постулируется, что Δx=Δy, что в общем случае не совсем так. Берите среднее значение (Δx+Δy)/2 - не сильно ошибетесь. Но вообще, лучше делать сетку квадратной вблизи скважин. Если сетка сильно прямоугольная, т.е. Δx>>Δy, то модельный поток вблизи скважины становится совсем не радиальным, а это приводит к существенным неточностям.Кстати, насчет среднего значения я могу и ошибаться, мне тоже было лень думать. Так же представляется очевидным, что если Δx>>Δy и, следовательно, модельный поток перестает быть похожим на радиальный, то вообще все выкладки из статьи перестают работать. Отсюда совет: проще сделать сетку у скважин квадратной, чем городить огород, пытаясь учесть неравенство сторон модельной ячейки. Кроме того, вообще считается, что соотношение сторон не может превышать 3 (4 в военное время) на всей площади модели, а особенно вблизи фильтрационных границ.
01/11/2012
Processing MODFLOW. Параметры.
- Горизонтальный коэффициент фильтрации и Проводимость Horizontal Hydraulic Conductivity and Transmissivity.
Коэффициент фильтрации должен быть задан для безнапорных и напорно/безнапорных слоев с переменной проводимостью (тип 1 и 3). Проводимость может быть задана для напорных и напорно/безнапорных слоев с постоянной проводимостью (тип 0 и 2).
Горизонтальный коэффициент фильтрации в общем случае характеризует проницаемость вдоль модельных строк. Проницаемость вдоль модельных столбцов получается путем умножения этой величины на коэффициент горизонтальной анизотропии (anisotropy factor, задается в диалоговом окне Layer Property dialog box).
Для безнапорного слоя проводимость считается как произведение коэффициента фильтрации на разность уровня воды и подошвы слоя (если в том же Layer Property dialog box явно не задана опция user-specified transmissivity).
Важно понимать, что «внутре» MODLFOW всегда коэффициент фильтрации пересчитывает в проводимость. Просто в случае с безнапорным слоем проводимость уточняется на каждой итерации (точно не помню, но кажется этот момент тоже настраивается — можно пересчитывать проводимость не на каждом расчетном шаге). - Перетекание и вертикальный коэффициент фильтрации Vertical Leakance and Vertical Hydraulic Conductivity.
Параметр перетекания расчитывается MODFLOW по формуле:
VCONT=\frac{2}{\frac{m_k}{(k_z)_{k,i,j}}+\frac{m_{k+1}}{(k_{z})_{k+1,i,j}}}
где:
mk - мощность k-ого слоя;
(kz)k,i,j - его вертикальный коэффициент фильтрации.
Вы можете задать VCONT явно (Vertical Leakance), либо в виде коэффициента фильтрации (Vertical Hydraulic Conductivity). Казалось бы, зачем в здравом уме заниматься ручным расчетом перетекания, если можно не мучаться и задать коэффициент фильтрации — однако, есть ряд задач, где это необходимо. - Коэффициент вертикальной анизотропииVertical Anisotropy.
Ну, тут все просто — это отношение горизонтального коэффициента фильтрации к вертикальному. Поддерживается версиями MODFLOW-2000 и старше. Сильно упрощает процесс решения обратных задач геофильтрации — подбирая проницаемость толщи не приходится синхронизировать значения коэффициентов фильтрации по разным осям. - Эффективная пористость Effective Porosity.
Не буду напоминать определение эффективной пористости — она есть в любом учебнике. Отмечу лишь, что на решение задач геофильтрации этот параметр не влияет, в отличие от миграционных задач. - Упругая емкость (породы) Specific Storage, Упругая емкость пласта Storage Coefficient и Гравитационная емкость Specific Yield.
Эти параметры используются при работе с нестационарными моделями. Упругая емкость пласта — это упругая емкость, умноженная на мощность пласта, и вы ее можете задать явно, либо предоставить выполнение операции умножения программе. Для безнапорных и напорно/безнапорных слоев надо еще задать гравитационную емкость Specific Yield.
- Wen-Hsing Chiang: “Processing Modflow PRO”, April 6, 2006;
- Simcore Software: “Processing Modflow. An Integrated Modeling Environment for the Simulation of Groundwater Flow, Transport and Reactive Processes”, July 5, 2012;
- Шестаков В.М.: «Гидрогеодинамика», 1995 г.
16/07/2012
Моделирование в понижениях
Однако, существует массивный пласт задач, для которых совершенно не обязательно знание о распределении напоров. К примеру: определение водопритока к котловану. Нам совершенно неважно какой там напор, в качестве результата нас устроит достигнутое понижение и расход.
В этом случае допустим такой приём: заменяем в нашем расчете термин «напор» на термин «понижение». Таким образом, «начальный напор» становится «начальным понижением», которое, очевидно, равно нулю. Все модельные слои должны быть напорными (Confined), даже если они не являются таковыми. Важно помнить: изолинии и массивы результатов, получаемые при таком расчете, будут показывать не напоры, а понижения. Расходы будут такими же, как и при расчете в термине «напор».
Совершенно ясно, что и этот подход не лишен недостатков и ограничений. Так, без дополнительных ухищрений невозможно учесть эффект осушения пластов, а величины расходов могут оказаться существенно завышенными для безнапорных горизонтов, как это всегда бывает, если их задать напорными.
11/07/2012
Симуляция откачек на сеточных численных моделях
Недавно обнаружил, что я не один такой «хитрый»: Rushton, K. R. & Chan, Y. K., 1976, A numerical model for pumping test analysis, Proc. Instn Civ. Engrs, Part 2, 61, pp. 281-296 and Barrash, W. and M.E. Dougherty, 1997, Modeling axially symmetric and nonsymmetrical flow to a well with MODFLOW, and application to Goddard2 well test, Boise, Idaho, Ground Water ,Vol. 35, No. 4: pp. 602-611 — http://info.ngwa.org/gwol/pdf/972062742.PDF
21/06/2012
Гидрогеологический дайджест
Benefits of the HydraSleeve:Groundwater Sampling in a Snap. Еще одна ссылочка на вышеобозначенную тему.Additional benefits of the HydraSleeve can be found here: http://www.hydrasleeve.com/learn-about-the-hydrasleeve.
- You can sample for all compounds (not just VOCs)
- You can sample a well in less than 15 minutes
- You can cut costs by 50% to 80%
- You can reduce purge water to a big fat goose egg
Back in March, I wrote a post on the Joys of Low Flow Groundwater Sampling (or not). Instead, I reviewed an alternative to this procedure — the Hydrasleeve. At the same time, I came across another option for those of you out there that get as much enjoyment from low flow sampling as you do paper cuts, thistles, and flaming dog poo: The Snap Sampler.Modeling Salt Water Intrusion: the Freshwater/Salt Water Interface. Меня тут недавно спрашивали об особенностях моделирования потока соленых и пресных вод. так вот, MODFLOW в чистом виде для этого не годится. Нужны другие модели. Типа той, о которой идет речь в этой заметке.
Due to the difference in density, there is a fairly sharp interface between freshwater and sea water in the subsurface. Thus, as freshwater flows out to the sea, it floats on top of a sea water wedge. The region of mixing at this interface is quite thin, leading to fairly sharp devide between the two fluids. In general, the brackish water that develops in this mixing zone flows outward to sea, rather than contaminating the freshwater. Under steady-state conditions, this situation is fairly stable, but pumping freshwater from the aquifer can change the pressure regime of the subsurface. This may lead to seawater being drawn into the freshwater aquifer and permanently degrading the aquifer’s water quality.World average annual evapotranspiration web map now available! В то время, пока наши ФГУПы и ТИСИЗЫ секретят и ДСПсят все что только можно и нельзя, мериканцы выложили во всеобщий доступ интерактивную карту величин среднегодовой эвапотранспирации. Посмотрел цифры для Москвы и области — вроде правдоподобные.
Most of us understand the hydrologic cycle in terms of the visible paths that water can take: rainstorms, rivers, waterfalls, swamps, etc. However, an even larger volume of water flows through the air all around us in two invisible paths: evaporation and transpiration. They claim 61% of all terrestrial precipitation, and together are referred to as evapotranpsiration. In order to better understand this important process, Esri’s Mapping Center has produced a web map showing the world’s average annual evapotranspiration.Carlos Molano’s YouTube Channel on Groundwater Modeling Spreadsheets. Я давно слежу за творчеством Карлоса Молано. Когда-то я наивно считал себя чуть ли не гуру расчетов в Excel-е. Как же я ошибался: по сравнению с Карлосом я вообще ничегео не умею.
Last year, I wrote about the groundwater modeling spreadsheets developed by hydrologist Carlos Molano. Molano has published a series of these spreadsheets on his personal website.I recently learned that Molano also has a youtube channel, where he discusses using spreadsheets to solve groundwater modeling problems.
15/06/2012
Ссылки
UTRA is a groundwater modeling code published by the United States Geological Survey. In many ways, it is similar to MODFLOW. SUTRA solves equations that simulate groundwater flow, solute transport with adsorption and decay, and thermal energy transport in groundwater. SUTRA can handle both steady-state or transient simulations. Physical properties can be projected on nodes or elements, or can be represented as a functions. Fluid density and viscosity are functions of temperature and solute concentration. Unsaturated flow properties are handled by a subroutine, UNSAT. Each node and element passes properties to and from UNSAT, which models flow through a series of unsaturated flow functions. Like MODFLOW, SUTRA communicates with input and output text files and runs in Fortran.MODFLOW-USG, coming soon. А скоро и еще одна будет.
Водопровод. Интересный сайт с заметками о водоснабжении, в том числе и о гидрогеологическом моделировании. Вроде как блог, но логики в навигации сильно недостает.MODFLOW-USG (unstructured grid) is a new version of MODFLOW being developed by Sorab Panday of GMS.
According to the Aquaveo forum, MODFLOW-USG will probably be fully released at some point in 2012.
14/06/2012
Моделирование водозаборных скважин
При моделировании водозаборов или скважинного водопонижения часто возникает необходимость (да что там часто — почти всегда) в получении точного уровня воды в действующей скважине. Очевидно, что просто взяв напор в блоке со скважиной, мы получим недостаточно точное значение. Как же перейти от напора в модельном блоке к напору непосредственно в скважине. Достаточно просто, процитирую статью Р.С.Штенгелова «Поиски и разведка подземных вод»:
...остановимся на моделировании работы водозаборов. Оно применяется, если необходимо учесть выявленные при разведке особенности неоднородного распределения параметров, сложные граничные условия, структуру потока и др., которые явно не удается безболезненно упростить для аналитических расчетов. Принципиально моделирование "водозаборных" задач ничем не отличается от других. Специфика состоит лишь в обязательном наличии водозаборных скважин (хотя они могут быть и в других задачах - дренажи, закачка промстоков, подземное выщелачивание и т.п.).
Основная особенность моделирования скважин: если в блок модели подать дебит скважины Q0 , то в нем при решении будет получен напор HB(или понижение SB), не отвечающий реальному напору (понижению) в скважине Hc(Sc). Почему ?
В природе поток в непосредственной близости от скважины имеет практически радиальный характер, а распределение напоров подчиняется логарифмике Дюпюи:
(1) H^{*} - H_{c} = \frac{Q_{c}}{2\pi T}ln\frac{\Delta x}{r_{c}}
В отличие от этого, на модели "приток" к водозаборному блоку происходит в виде линейных потоков из четырех смежных блоков (см. рисунок); расход каждого из таких потоков:
Q=KFI=Km\Delta x\frac{H^*-H_{B}}{\Delta x}
Так как Q=\frac{1}{4}Q_c, то:
(2) H^* - H_{B} = 0.25\frac{Q_c}{T}
Если теперь почленно вычесть (2) из (1), то:
(3) H_{B}-H_{c}=S_{c}-S_{B}=\frac{Q_c}{T}\left(\frac{1}{2\pi}ln\frac{\Delta x}{r_{c}}-0.25\right)Таким образом, к напору/понижению, получаемому в «скважинном» блоке, следует сделать поправку по формуле (3). Особенно об этом надо помнить при работе с «чужими» программами численного моделирования, для которых, как правило, нет внятного описания многих деталей построения расчетных алгоритмов. Решить эту проблему (а это действительно проблема, так как разность может быть весьма значительной) можно только путем тестирования программы по аналитическим решениям.
При конструировании модельной сетки следует стремиться к квадратной разбивке в области расположения скважин, стараясь «посадить» скважины в узлы блоков.
Еще одно замечание: если в один блок сетки модели попадают несколько работающих водозаборных скважин, то их приходится объединять в одну эквивалентную, т.е. заменять их «большим колодцем» с суммарным дебитом, рассчитав его радиус по вышерассмотренным зависимостям.
Характер притока к водозаборной скважине в РЕАЛЬНОМ (синие стрелки) фильтрационном потоке и на СЕТОЧНОЙ МОДЕЛИ (черные стрелки)
Из выражения (3) так же следует, что если вы не хотите каждый раз пересчитывать «сеточный» напор в «скважинный», то размер блока модели\Delta x, при котором теоретически H_{B}=H_{c}, следует задавать таким:
\Delta x=e^{0.5\pi}r_{c}\approx 4.81r_{c}
Таким образом, если радиус нашей скважины составляет r_c=125 мм, то размер «скважинного блока» модели должен быть равен приблизительно 0.6 м. Не очень то много — так дробить сетку не каждая модель позволит.
P.S.: в книге “FINITE-DIFFERENCE MODEL FOR AQUIFER SIMULATION IN TWO DIMENSIONS WITH RESULTS OF NUMERICAL EXPERIMENTS” By P. C. Trescott, G. F. Pinder, and S. P. Larson на 9 и 10 странице приводится похожее решение этой задачи.
20/05/2012
Развенчивая мифы
Среди начинающих гидрогеологов бытует мнение, что для обучения гидрогеологическому моделированию достаточно в подробностях изучить какой-либо из имеющихся инструментов и всё — специалист-модельер готов. К сожалению, это не так. Владение инструментом — необходимое, но недостаточное условие. Более того, доскональное знание всех особенностей программы, приводящее к зацикливанию на технической стороне решения проблемы, зачастую даже мешает. Как я уже говорил, модель — это некая визуализация представлений о реальности, возникших в голове специалиста. Очевидно, что если этих представлений в голове специалиста не возникает, то и модель ничего общего с реальностью иметь не будет. Еще чаще случается так, что представления хоть и есть, но неверные.
Ключ к решению — только опыт. Опять же, представляется очевидным, что на начальном этапе карьеры, когда опыта нет и быть не может, его придется позаимствовать. Словом, ищите наставника. Причем вовсе не обязательно, чтоб он сам занимался моделированием — просто опытный гидрогеолог подойдет не хуже.
p.s.: А мне повезло, я учился у лучших.
16/05/2012
Задание геометрии слоев
Однако, с опытом набирается некий запас хитростей и know-how по решению таких задач. Выклинивающийся слой можно сделать околонулевой мощности — слой как-бы останется, но на решение уже влиять не будет. Другой вариант: в выклинившемся слое задать параметры аналогичные подстилающему или надстилающему слою — это сложнее, но с методологической точки зрения более грамотно. Важно помнить, что логичное казалось бы действие: сделать слой неактивным за границей выклинивания, приведет к образованию глухой непроницаемой границы для вертикального перетока. Само собой, это актуально для моделирования многослойной толщи и когда выклинивающийся слой находится посередине. Окажись он сверху или снизу — этот метод вполне применим. С экстраполяцией сложнее: приходится внимательно изучать геологические карты района, смотреть разрезы, выискивать архивные скважины. Творческая задача, одним словом.
У тех, кто работает с горно-складчатыми областями свои погремушки: bedrock folding, when not to use interpolation.
14/05/2012
Скачать программы для гидрогеологического моделирования
- Бесплатная версия PMWIN 5.3 — http://www.simcore.com/pm53
- Пробные версии PMWIN 7 и 8 — http://www.simcore.com/download
- Разные варианты Visual Modflow — http://www.swstechnology.com/groundwater-software/groundwater-modeling
- Aquaveo GMS — http://www.aquaveo.com/gms
- ModelMuse — http://water.usgs.gov/nrp/gwsoftware/ModelMuse/ModelMuse.html
- mflab — http://code.google.com/p/mflab/
- Interactive Ground Water — http://www.egr.msu.edu/igw/igw_download.html
- Geolink ModTech — http://www.geolink-consulting.ru/products/modtech/download.html
- AnAqSim — http://www.fittsgeosolutions.com/index.html
- Groundwater Vistas — http://www.groundwater-vistas.com/gwv/product_info.php?products_id=43
- Leapfrog Hydro — http://www.leapfrog3d.com/products/leapfrog-hydro
10/05/2012
Комплексное гидрогеолого-гидравлическое моделирование
На днях получил электронное письмо от Александра Владилиновича Расторгуева, под чьим руководством в стенах тогда еще ФГУП «НИИ Водгео» я можно сказать сформировался как специалист в гидрогеологическом моделировании. И он мне посоветовал сделать рубрику в блоге, посвященную теме моей диссертации. Идея здравая, как мне кажется. В конце-концов, может хоть так у меня самого в голове утрамбуется весь тот сумбур, что в ней образовался. Тут, как говорится, надо просто начать. Будем считать эту запись анонсом новой рубрики.
Дабы соответствовать заголовку, попробую в двух словах описать суть моей диссертации. Надеюсь, смогу сделать это, что называется, «на пальцах». Полное название моей диссертации звучит так: «Комплексные расчеты водозаборов подземных вод в сложных гидрогеологических условиях», а суть ее достаточно проста: скважины крупного водозабора, объединенные общим водоводом (или даже более сложной сетью водоводов), взаимно влияют друг на друга не только под землей, но и над. Причем традиционно расчет работы водозабора происходит в два этапа: на первом специалисты гидрогеологи считают подземную часть задачи, а на втором полученные распределения напоров и расходов используются как заданные специалистами гидравликами.
Однако такой подход не позволяет учесть тот факт, что водозаборы подземных вод представляют собой комплекс водозаборных сооружений и сооружений системы подачи воды от скважин, все элементы которого гидравлически взаимосвязаны. Эта связь проявляется в том, что производительность водоподъемного оборудования зависит от положения динамических уровней воды в скважинах, а те, в свою очередь, определяются количеством отбираемой воды из скважин. Иными словами, уровень воды в скважинах зависит от их дебита, а дебит — от уровня. Q~H и H~Q, причем как в гидравлической, так и в гидрогеологической постановке.
Созданная нами комплексная гидравлико-гидрогеологическая модель позволяет в достаточной мере учесть интерференцию скважин, как в подземном пространстве, так и по трубам на поверхности.
Вот, как-то примерно так.
08/05/2012
GeoSolid3D
08/04/2012
И еще разок о граничных условиях
21/03/2012
О дискретизации модели
Ну ладно картинки различаются, там еще и расходы скважин не бьются почти в два раза. Вот так вот.
15/03/2012
Обучение гидрогеологическому моделированию
Вопрос 5:
Есть ли в Москве курсы по гидрогеологическому моделированию?
Ответ:
Да, такие курсы есть. Их не очень много. Лично мне достоверно известно только о двух организациях, предлагающих такого рода обучение. В первую очередь, это ЗАО «ДАР/ВОДГЕО». Там вас научат азам геофильтрационного моделирования с помощью программных комплексов Processing MODFLOW и/или Visual MODFLOW. Вторая организация, про которую я слышал, что там проводятся курсы по моделированию —ЗАО «Геолинк Консалтинг», где вас обучат работе с их собственным программным продуктом для моделирования процессов геофильтрации и массопереноса в подземной гидросфере ModTech.Как выяснилось, на данный момент Геолинк не проводит таких курсов.
Однозначно советовать одно из этих предложений я не решусь — у каждого есть свои плюсы и минусы. Единственное, сразу скажу — эти курсы скорее всего окажутся слишком дорогими для частного лица. Куда податься бедному частнику — я не знаю. Могу разве что посоветовать обратиться ко мне (в панели справа есть вся необходимая контактная информация). У меня есть некоторый опыт преподавания на такого рода курсах — попробуем что-нибудь придумать. Разумеется, это предложение действительно и для юридических лиц.
05/03/2012
WEAP является компьютерной системой для интегрированного планирования водных ресурсов с оказания помощи квалифицированным специалистам. WEAP обладает выразительной, гибкой и дружественной средой управления водными ресурсами и анализа результатов. Все возрастающее число профессионалов находит WEAP полезным дополнением к их набору моделей, баз данных, электронных таблиц и другого компьютерных программного обеспечения. Этот обзор посвящен описанию: целей WEAP, подходов и структуре.
15/02/2012
О дружбе гидрогеологов и нефтяников
The real question that I want to ask is, what can hydrogeologists learn from the oil and gas industry? The energy industry has enviable financial resources and scientific energy. Over the next couple of blog posts I will explore the major trends that are emerging in hydrocarbon reservoir modeling.